
171

Chapter 15 Conclusions

15.1 Results of this Work

With this work we have striven to demonstrate that pure object-oriented languages can be efficient on stock hardware,

given suitable implementation techniques. To achieve high efficiency, we had to design and implement several new

implementation techniques, including customization, type prediction, iterative type analysis, and splitting.

Customization and type prediction extract representation-level type information from untyped source programs, and

type analysis and splitting preserve this valuable information as long as possible. The accumulated type information

then is used to statically-bind and inline away messages, especially those involved in user-defined control structures

and generic arithmetic, leading to dramatic performance improvements.

By lazily compiling uncommon cases such as arithmetic overflows and primitive failures, the compiler can concentrate

its efforts on the common-case parts of a program while still supporting the uncommon events if they should occur.

This strategy resolves the tension between fast execution and powerful language features by providing the best of both

worlds: good execution and compilation speed for common cases and support for more powerful but less common

cases.

With these techniques the current SELF implementation runs small- to medium-sized benchmarks at about half the

speed of optimized C, with compile times that are comparable to the optimizing C compiler and compiled code space

usage that is less than double that of the optimizing C compiler. This new-found execution speed is more than five

times faster than the fastest previous implementation of a similar language, ParcPlace Smalltalk-80.

Several general themes underlie this work. Our techniques frequently trade away space for speed, compiling multiple

specialized versions of a single piece of source code; customization and splitting exemplify this approach. To minimize

the compile time and compiled code space costs of this approach, many of our techniques are applied lazily. Methods

are compiled and specialized lazily, only when first invoked; uncommon parts of the control flow graph are compiled

lazily, only when first taken. Lazy compilation appears to be the saving grace which makes specialization practical.

15.2 Applicability of the Techniques

The techniques developed for SELF optimize programs that make heavy use of message passing. These techniques also

apply to other languages that share these properties. Clearly, other pure, dynamically-typed object-oriented languages

such as Smalltalk-80 could benefit directly from these techniques. As discussed in section 5.2.2, our techniques also

apply to relatively pure, statically-typed object-oriented languages such as Trellis/Owl and Eiffel. Hybrid languages

such as C++ and many object-oriented Lisps have less need for our techniques, since performance-critical parts of

programs can be written in the lower-level non-object-oriented subset of the language. However, our techniques would

still be useful to the extent that implementations wish to support and encourage the use of the object-oriented features

of their languages. One researcher already has proposed extending C++ to support a form of customization [Lea90].

Our techniques also could improve the performance of many languages that do not claim to be object-oriented. These

languages include powerful features in which several different representations of objects can be used interchangeably

within programs. This ability is essentially the same as message passing, except that the set of possible representations

usually is not user-extensible, and so we argue that these languages contain object-oriented subsets. Our techniques

would be useful in improving performance of these languages to the extent that these “object-oriented” features are

used by programs. For example, non-object-oriented languages supporting generic arithmetic, such as most Lisps and

Icon, could significantly benefit from the inclusion of type analysis, type prediction, splitting, and lazy compilation of

uncommon cases to extract and preserve representation-level information for optimization. To illustrate, our SELF

implementation generates code for benchmarks using generic arithmetic that runs more than twice as fast as the code

generated by the ORBIT compiler for the T dialect of Scheme, even though the T benchmarks use no message passing

or user-defined control structures. Even when the T version of the benchmarks is rewritten to use unsafe integer-

specific arithmetic (giving up the semantics of generic arithmetic), SELF still runs faster. Based on this result, we argue

that language designers, implementors, and users should abandon unsafe integer-specific arithmetic in favor of safe,

expressive generic arithmetic combined with optimization techniques like ours.

172

Language features other than generic arithmetic might benefit from our techniques. APL allows programs to

manipulate scalars, arrays, and matrices of arbitrary dimension interchangeably, and our techniques might be used to

lazily compile dimension-specific code to speed APL programs. Implementations of logic programming languages

such as Prolog might benefit from knowing that along certain branches some logic variable is guaranteed to be

instantiated; this knowledge could come from techniques related to type analysis and splitting. Similarly,

implementations of programming languages supporting futures such as Multilisp [Hal85] and Mul-T [KHM89] could

distinguish between known and unknown futures, compiling specialized code for each case (or perhaps just for the

common case of known futures). Thus, our techniques may be more broadly applicable to a variety of modern

programming languages beyond only pure object-oriented languages.

15.3 Future Work

While significant progress has been made in moving SELF and other pure object-oriented programming languages into

the realm of practicality, more work remains to complete the task. Some applications require the maximum in

efficiency, such as scientific and numerical applications like those traditionally written in Fortran. SELF as currently

implemented is probably not efficient enough for such demanding users. One avenue of future research therefore

would push the upper limits of performance towards that achieved for traditional languages and to extend the current

implementation techniques to handle floating point representations as efficiently as integer representations are

currently handled in the SELF implementation.

A related direction would attempt to validate that these techniques scale to much larger systems than have been

measured so far. Several of our techniques rely on trading away compiled code space for run-time speed. For the

systems measured, in the 100- to 1000-line program range, this potential space explosion has not been a problem in

practice, but for larger programs, on the order of 10,000 or 100,000 lines, the concern still remains. More research

could be done to ensure that the techniques are robust in the face of such large systems.

A third direction would focus on further improving the performance of object-oriented programs. Only a few of the

benchmarks measured so far make significant use of the extra power of the SELF language beyond what is available

in traditional languages. The question remains of how well our techniques will fare for programs that make heavy use

of the advanced features of the language. Ideally, object-oriented programs would be written much faster and would

be easier to change and extend than equivalent non-object-oriented programs, and would run just as fast as the non-

object-oriented versions. This goal is not yet met by the current SELF implementation, which for the richards

benchmark runs about a third the speed of the optimized C version. Some initial work has already begun in this

direction [HCU91].

A final direction would address more of the programming environment issues. While the current SELF compiler

compiles as fast as the optimizing C compiler on small- and medium-sized benchmarks (and compiles more than twice

as fast as an optimizing C++ compiler), the fact that compilation takes place at run-time for SELF holds our system up

to a higher standard. Users tend to become distracted by pauses of more than a fraction of a second, either from garbage

collection or from run-time compilation, and their productivity drops correspondingly. Pauses of more than a dozen

seconds or so bring about an even more severe distraction and decline in productivity. The current SELF

implementation might meet the second level of performance but unfortunately is still not at the level of fraction-of-a-

second compile pauses. To maintain a high-productivity environment, more research is needed to reconcile

unnoticeable compiler pauses with good run-time performance. Fortunately, this problem also is being actively

pursued [HCU91] and early results are quite promising.

15.4 Conclusion

We believe that this work has demonstrated the feasibility of the new techniques and consequently the practicality of

pure object-oriented languages for a wide range of applications. We hope that this demonstration will convince future

language designers to avoid compromises in their designs motivated solely by concerns over the efficiency of a pure

message passing model. We also hope that language users will begin to demand such simple, flexible languages.

